A Lithospheric Attenuation Model of North America
نویسندگان
چکیده
Recent moderate-sized, but strongly-felt, earthquakes in eastern and central North America have highlighted the important role of the earth’s attenuation structure in estimating and predicting local and regional ground motions. Over the past several years, we have been developing methods to use the amplitudes of regional phases Pn, Pg, Sn, and Lg to invert for the crust and upper mantle attenuation structure in Eurasia, and have recently started transporting the methodology to North America. We now have path coverage for most of North America, including Canada, the United States, Mexico, and portions of the Caribbean, with the best coverage in the United States. After describing the development of the model, we will discuss the results in the context of the tectonics of the region, most notably the large differences between western North America and areas east of the Rockies. We will then demonstrate the use of the model in a number of applications including estimating reliable moment magnitudes for the Wells, NV earthquake sequence, the use of the models in strong ground motion prediction for the Mineral, VA mainshock, and in both discriminating and estimating explosion characteristics (depth, yield) of events at the Nevada Test Site.
منابع مشابه
SKS splitting beneath Transportable Array stations in eastern North America and the signature of past lithospheric deformation
Seismic anisotropy in the upper mantle beneath continental interiors is generally complicated, with contributions from both the lithosphere and the asthenosphere. Previous studies of SKS splitting beneath the eastern United States have yielded evidence for complex and laterally variable anisotropy, but until the recent arrival of the USArray Transportable Array (TA) the station coverage has bee...
متن کاملStratified seismic anisotropy and the lithosphere- asthenosphere boundary beneath eastern North America
Long records of teleseismic observations accumulated at permanent seismic stations Harvard, MA; Palisades, NY; and Standing Stone, PA, in eastern North America are inverted for vertical distribution of anisotropic parameters. High-resolution anisotropy-aware P wave receiver function analysis and multiple-layer core-refracted SKS waveform modeling favor more than one layer of anisotropy beneath ...
متن کاملLithospheric topography, tilted plumes, and the track of the Snake River–Yellowstone hot spot
[1] The trace of the Snake River–Yellowstone hot spot is the world’s best example of a mantle plume that has been overridden by continental lithosphere. The ‘‘standard model’’ calls for the plume head to rise under northern Nevada and be forced northward to form basalts of the Columbia Plateau; subsequent movement of North America to the southwest over the plume tail created a hot spot trace on...
متن کاملWater contents in mantle xenoliths from the Colorado Plateau and vicinity: Implications for the mantle rheology and hydration-induced thinning of continental lithosphere
[1] Nominally anhydrous minerals (e.g., olivine, clinopyroxene, and orthopyroxene) in peridotite xenoliths collected from the Colorado Plateau and southern Basin and Range in western North America were systematically analyzed by Fourier transform infrared spectroscopy for water contents. Measured water contents range from 2 to 45 ppm for olivine, from 53 to 402 ppm for orthopyroxene, and from 1...
متن کاملMode of lithospheric extension: Conceptual models from analogue modeling
[1] Comparison of analogue experiments at crustal and lithospheric scale provides essential information concerning the mode of deformation during lithospheric extension. This study shows that during extension, lithospheric deformation is controlled by the development of shear zones in the ductile parts. At lithospheric scale, the global deformation is initiated by the rupture of the brittle man...
متن کامل